Sunday, 25 Jun 2017
You are here: Home News Articles/Readings Food Safety GM Contamination Register Logs 396 Incidents over 17 Years
GM Contamination Register Logs 396 Incidents over 17 Years PDF Print E-mail
Friday, 28 November 2014 06:53

THE GM CONTAMINATION REGISTER: A REVIEW OF RECORDED CONTAMINATION INCIDENTS ASSOCIATED WITH GENETICALLY MODIFIED ORGANISMS (GMOS), 1997–2013

Becky Price and Janet Cotter

International Journal of Food Contamination 2014, 1:5

doi:10.1186/s40550-014-0005-8
Abstract
Background

Since large-scale commercial planting of genetically modified (GM) crops began in 1996, a concern has been that non-GM crops may become contaminated by GM crops and that wild or weedy relatives of GM crops growing outside of cultivated areas could become contaminated. The GM Contamination Register contains records of GM contamination incidents since 1997 and forms a unique database. By the end of 2013, 396 incidents across 63 countries had been recorded.

Results

Analysis of the Register database reveals rice has the highest number of GM contamination incidents of all crops (accounting for a third of incidents), despite there being no commercial growing of GM rice anywhere in the world. The majority of these incidents derive from two distinct cases of contamination of unauthorised GM rice lines, LLRICE from the USA and BT63 rice from China. Maize accounts for 25% of GM contamination incidents, whilst soya and oilseed rape account for approximately 10% of incidents. Although factors such as acreage grown, plant biology, designation as a food or non food crop and degree of international trading can potentially affect the frequency and extent of contamination, it is not possible to determine which are dominant.

The Register records a total of nine cases of contamination from unauthorised GM lines, i.e. those at the research and development stage with no authorisation for commercial cultivation anywhere in the world. An important conclusion of this work is that GM contamination can occur independently of commercialisation. Some of these cases, notably papaya in Thailand, maize in Mexico and grass in USA have continued over a number of years and are ongoing, whilst other contamination cases such as Bt10 maize and pharmaceutical-producing GM crops occur only with a single year. The route(s) of contamination are often unclear.

Conclusions

The detection of GMO contamination is dependent on both routine and targeted monitoring regimes, which appears to be inconsistent from country to country, even within the EU. The lack of an analytical methodology for the detection of GM crops at the field trial stage (i.e. pre-commercialisation) can hamper efforts to detect any contamination arising from such GM lines.

 

 

Conclusions

Nearly 400 incidents of GM contamination have been recorded on the Register since 1997. There does not appear to be an overall pattern relating to any one particular factor. Instead, factors could include, but may not be limited to global acreage, international trade, plant biology and monitoring frequency. Experimental GM livestock have, on occasion, entered either human food or animal feed.

All three principal, commercially grown GM food and feed crops (oilseed rape, soya and maize) have been associated with GM contamination incidents over the past 17 years. There have also been nine cases of contamination associated with GM lines with no authorisation for cultivation anywhere in the world, mostly at the research and development stage. An important conclusion of this work is that GM contamination can occur independently of commercialisation. Indeed, GM lines of rice, the crop associated with the highest number of incidents, has never been grown commercially. The detection of GMO contamination is dependent on both routine and targeted monitoring regimes, which appears to be inconsistent from country to country, even within the EU. The lack of an analytical methodology for the detection of GM crops at the field trial stage (i.e. pre-commercialisation) can hamper efforts to detect any contamination arising from such GM lines.

Full article and source: FoodContaminationJournal